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Abstract—It’s well known that Global Navigation Satellite 

System (GNSS) is inaccurate in urban areas, because of many 

building blocked and/or reflected satellite signals. GNSS shadow 

matching is a promising positioning technique to improve the 

GNSS positioning accuracy in urbanized cities. Shadow matching 

algorithm is initialized by the positioning solution of conventional 

weighted least square estimation. Then, a grid map is defined. 

Shadow matching algorithm generates a building boundaries with 

the help of 3D city model to predict the satellite visibility (whether 

the direct signal transmission is visible or blocked) of the 

hypothesis locations in the grid map. By comparing the predicted 

with observed satellite visibilities at each gird point, a score for 

each grid point in the search area would be computed. The final 

positioning solution is calculated based the weighted average of the 

hypothesis locations, where the weighting is set based by the match 

score. However, it remains great challenges to identify whether the 

received GNSS measurements are through line-of-sight (LOS) or 

none-line-of-sight (NLOS) transmission in urban canyons because 

the NLOS signals could be received by reflection from buildings. 

LOS/NLOS classifier trained by machine learning algorithms 

would give higher recognition rate than the classifier solely based 

on received signal strength. This paper demonstrates the 

integration of GNSS shadow matching with the proposed 

intelligent LOS/NLOS classifier. The LOS/NLOS classifier based 

on signal to noise ratio (SNR), number of received satellites  (NRS), 

elevation angle (EA), pseudorange residual (PR), pseudorange 

residual percentage (PRP) and normalized pseudorange residual 

(NRP). Different machine learning algorithms including k-nearest 

neighbors (KNN), neural network (NN), support vector machine 

(SVM), decision tree (TREE) and simple SNR classifier (SSC) 

algorithms will be implemented and compared. Different scenarios 

are also considered and used as training data, including mild or 

middle and deep urban areas with various building distributions. 

The classification accuracy of SSC considering C/N0 larger than 

35 dB-Hz as LOS and smaller than 35 dB-Hz as NLOS, is 69.50% 

at deep urban areas, and 86.47% at middle or mild urban areas. 

Using data collected by a u-blox GNSS receiver in dense building 

areas of Hong Kong, the integrated shadow matching position 

solutions with the machine learning classifier are more accurate 

than weighted least squares  (WLS)approach. The mean position 

error using intelligent LOS/NLOS classifier is reduced to 60% of 

that obtained using WLS.  

Keywords—GNSS, Smartphone, Shadow Matching, NLOS and 

Machine Learning 

I.  INTRODUCTION  

Global Navigation Satellites Systems (GNSS) are widely 
applied in various scenarios and positioning services, e.g. 
vehicle or pedestrian navigation, which are frequently used in 

urban canyons. It is well-known, however, GNSS receivers 
show degraded performance under poor satellite geometric 
distribution due to the surrounding high-rise buildings in these 
areas  [1].  

Many technologies have been used to solve this problem, 
such as ray-tracking [2], pseudo-range error modelling [3], 
shadow matching (SM) [4], consistency checking [5], etc. 
Among these, the shadow matching method significantly 
outperforms conventional methods in cross-street direction 
determination [6]. With the help of 3D-mapping, shadow 
matching shows the potentials to give a four-time improvement 
on conventional GNSS solutions for both u-blox and smartphone 
receivers [7]. In recent year, machine learning technology has 
been used in GNSS fields.  

The SDM method determines a user’s position by comparing 
the similarities of satellite visibility between the receiver and the 
candidate positions.  Both light-of-sight (LOS) and non-light-of-
sight (NLOS) satellites contribute to the position determination. 
Thus, LOS/NLOS classifying performance has a great impact on 
the positioning accuracy. 

In[8], machine learning technology was applied for 
estimating GPS observation errors in forestry environments and 
evaluating the effects of forest cover on positioning accuracy. 
Guinness [9] investigated a wide range of learning techniques 
for sensing mobility contexts, together with other sensors, e.g. 
GPS and accelerometers. The other integrations with GNSS are 
identifying mobility contexts. In [10], machine learning is used 
to detect ionospheric scintillation and classify scintillation 
events in the frequency domain. In this paper, the machine 
learning method is used to classify LOS/NLOS signals for SDM. 
In [6], signal-to noise-ratio (SNR) was used as the probability of 
LOS with Bayes theorem and fitting approach. Unfortunately, in 
urban canyons, a classifier based only on the SNR cannot 
determine satellite visibilities correctly. Thus, to distinguish 
between LOS and NLOS, multiple derivations from GNSS 
measurements should be jointly used. In this paper, the machine 
learning is trained using the following derivations: signal to 
noise ratio (SNR), number of received satellites  (NRS), 
elevation angle (EA), pseudorange residual (PR), pseudorange 
residual percentage (PRP) and normalized pseudorange residual 
(NRP). The training models include k-nearest neighbors (KNN), 
neural network (NN), support vector machine (SVM), decision 
tree (TREE) and simple SNR classifier (SSC), corresponding to 
different building block shapes.  

The rest of the paper is organized as follows: The model of 
NLOS/LOS classifier based on machine learning with different 



 

feature selections and combinations would be introduced in 
Section II. After that shadow matching based machine learning 
technology would be expounded in Section III. The detailed 
experiments set-up and results are given in Section IV. Section 
V summarizes the conclusions and future work. 

II. LOS/NLOS CLASSIFIER BASED ON MATCHING LEARNING 

A. Intelligent LOS/NLOS classifier based on machine 

learning 

The flowchart of the proposed classifier based on machine 
learning is shown in Fig. 1. In the offline stage, raw GNSS 
measurements are first collected in several urban scenarios, from 
which features are extracted. Then, satellite visibility are 
determined using the information of 3D building models, ground 
truth and GNSS ephemeris. Finally, an offline labelled database 
is generated, which contains a large amount of NLOS signals, 
because there are many surfaces reflecting or blocking the 
satellite signals. In the online stage, based on the offline 
database, an intelligent LOS/NLOS classifier based on machine 
learning is exploited. To accomplish this, features are extracted 
from the unlabeled GNSS measurements in real time, and used 
by machine learning classifier to detect LOS/NLOS signals. 

B. Features of model 

The GNSS measurements are provided in the form of 
Receiver Independent Exchange Format (RINEX) data, which 
consists of measuring time, pseudorange, carrier-phase and 
Doppler shift, etc. In this paper, all used machine learning 
features could be derived from raw RINEX data, which means 
that this approach can deal with a large number of 
measurements. Furthermore, there are some features presenting 
potential ability to discriminate NLOS and LOS signals as 
follows: 

1) Signal Noise Ratio (SNR) 
It has been proved that LOS signals have higher SNR than 

NLOS signals in most cases [6]. Therefore, SNR is usually used 
as a feature for LOS signals. In our training dataset, similar 
phenomenon has also been observed as shown in Fig. 2. 

2) Number of received satellites (NRS) 
The number of received satellites is obtained directly from 

RINEX file. 

 

Fig. 1. Flowchart of intelligent LOS/NLOS classifier based on machine 
learning. 

  

 (a) Skymask of LOS/NLOS 

satellites 
(b) SNR value of LOS/NLOS 

signals 

Fig. 2. Demonstration of SNR of LOS/NLOS signals. 

3) Elevation angle (EA) 
NLOS effect is highly correlated with the satellite elevation 

angle [11]. Thus, the EA is used as a feature for training the 
machine learning model. 

4) Pseudorange Residual (PR) 
The position estimation is obtained using the least square 

method as following: 

 ( )
1

T TX H H H p
−

=  (1) 

where X  is receiver state, H  is a matrix composed of unit 
vectors pointing from the user to satellites in ECEF coordination 
and clock bias. p denotes pseudorange measurements. After 

several iterations, a more accurate position could be generated 
and the pseudorange residual is calculated by : 

 = − PR p H X  (2) 

5) Pseudorange Residual Percentage (PRP) 
A pseudorange residual percentage, PRP (%), is defined as 

the constitute percentage of mean value of pseudorange residual 
at each epoch: 

 


=


i

n

ii

Pr n
PRP

Pr
 (3) 

where n  is the received satellite number. 

6) Normalized Pseudorange Residual  (NPR) 
Moreover, at each epoch, the pseudorange residual for 

satellite i  can be normalized by: 

 min

max min

−
=

−

iPr Pr
NPR

Pr Pr
 (4) 

maxPr and 
minPr are the maximum and minimum pseudorange 

residuals for all satellites at each epoch. 

III. SHADOW MATCHING BASED ON MACHINE LEARNING 

The flowchart of shadow matching algorithm based on 
machine learning is shown in Fig. 3. The module in red is the 
newly proposed method in this paper, compared with the basic 
shadow matching algorithm [4]. Main modules are described as 
follows: 

1) Search area determination 
An 50 square meters search area is created, centering at 

the initial weighted least square position solution with 
GNSS measurement. Within this search area, the building 



 

 

Fig. 3. Flowchart of shadow matching algorithm with machine learning. 

boundary information and a gird map with a 2-meter resolution 
are also generated. 

2) Predicted satellite visibility 
As shown in Fig. 4, in dense urban areas, signals from 

satellites with low elevation angles are likely to be blocked by 
surrounding tall buildings, leading to the satellite invisibility. 
Thus, a straightforward and effective way to predict satellite 
visibility is comparing the elevation angles of both satellites and 
building boundaries at the same azimuth angle. 3D building 
models and GNSS measurements are used to obtain the building 
boundary information and satellites position, respectively. 

3) Observed satellite visibility 
For observed satellite visibility, one of the convenient ways 

is to consider all received signals as LOS (tracked) signals, but 
actually the measurements may include both NLOS and LOS 
signals [12]. Another approach is using a SNR-weighted fitting 
model to predict the probability of LOS signals [6]. Signal 
strength can also be considered as a distinctive feature of 
NLOS/LOS. However, those attempts still face the difficulty in 
various scenarios with unreliable SNR value. In this paper, all 
the received signal would be classified using machine learning 
technology described in Section II, which is also is a 
contribution of this paper. 

4) Score scheme 
Basing on the observed and predicted satellite visibility, a 

score scheme for candidate locations is needed. At one candidate 
position, a satellite predicted to be unblocked by buildings,  if 
and only if it is measured and classified as LOS signal  would 
gain a point. On the other hand, for predicted blocked satellite, 
only by meet the requirement of NLOS labelled or not measured, 
the satellite would also gain a point for this candidate position as 
shown in Fig. 5. 

5) Positioning 
The final position solution is set to the weighted mean of the 

highest scoring candidate positions. At the same time, this 
solution would be considered as an initial position for next loop 
till there is a very small difference between the last and current 
solutions, and the radius of searching circle will be decreased to 
migrate the impact of local Minima. For this case, local Minima 
means similar building scenarios but far away position or 
satellite geometry makes shadow matching score becomes very 
close or even same, which could decrease shadow matching 
accuracy as shown in Fig. 6. 

 

Fig. 4. Demonstration of signal blockage. 

 

Fig. 5. Demonstration of score scheme. 

 

IV. EXPERIMENTS AND ANALYSIS 

A. Experimental set-up 

GNSS raw data  was collected at seven different locations in 
an urban area of Kowloon in Hong Kong, as shown in Fig. 7. At 
each location, static data was collected for more than 10 minutes 
using a u-blox NEO M8T receiver. 

The seven locations contain most types of building blocking 
circumstances. According to the number of building sides which 
surround the location, the seven locations are divided into four 
groups. Group 1 contains Location 1, which is blocked by one 
building side. Group 2 contains Locations 2 to 5, which are 
blocked by two sides. Location 6 represents a deep urban 
environment with 3 surrounding buildings in its front, belonging 
to Group 3. Location 7, divided into Group 4, is the deepest 
urban canyon among the seven locations, where only satellites 
with very high elevation angles are receivable. Skymasks of the 
above four groups are shown in Fig. 8. 

 

Fig. 6. Different locations with the same matching score. 

 

Fig. 7. Experiment area in Hong Kong. 



 

 
(a) Group 1 

 
(b) Group 2 

 
(c) Group 3 

 
(d) Group 4 

Fig. 8. Skymasks of four different cases in the experiments. 

Table I lists the detailed information of data collected in 
different locations, L1 to L7. LA and LB are two locations to test 
the training model, as shown in Fig. 9. Location A  is in the 
middle of an square, intended for testing the machine learning 
performance in areas where two or three building sides exist.  

Compared to Location A, Location B is closer to one side 
of the area, which represents the cases of one or two building 
sides. 

 

B. Results and analysis 

1) Classification results 
Features are also divided into several groups to explore 

which features contribute more to machine learning based 
classifier, as shown in Table II. 

After obtaining the features from raw GNSS measurements 
at training locations, the machine learning models are modified 
and then tested at Location A and B, with results shown in 
Tables III and IV, respectively.  

From Table III, it could be noted that SVM have the best 
performance over all the results as 78.31% percentage to predict 
the right type of signals. Furthermore, most models have similar 
performance only based SNR feature, approximately 70%. In 
addition, we have found that when taking elevation angle into 
model, performance of KNN, SVM and TREE have improved a 
lot, even 20% in TREE model and almost 10% in KNN. That 
bring us the idea that besides the SNR value, elevation angle 
could play an important role in classification. However, the 
pseudorange residual, pseudorange residual percentage ratio and 
pseudorange residual rate could not help to improve the model a 
lot, or even getting worse for KNN, SVM and NN. The more 
intuitive result is shown in Fig. 10. 

At areas with fewer surrounding sides blocked, e.g. Location 
B, the classification accuracy improves a lot for most of feature 

TABLE I.  SUMMARY OF THE DATASETS 

Number 

of 

blocked 

sides 

Dataset 

Number 

Dataset 

type 

Total 

samples 

LOS  

(-1) 

NLOS 

(1) 

LOS 

rate 

(%) 

1 L1 Training 6066 3972 2094 65.48 

Number 

of 

blocked 

sides 

Dataset 

Number 

Dataset 

type 

Total 

samples 

LOS  

(-1) 

NLOS 

(1) 

LOS 

rate 

(%) 

2 L2 Training 11081 6059 5022 54.68 

2 L3 Training 15805 7744 8061 49.00 

2 L4 Training 8889 3102 5787 34.09 

2 L5 Training 18027 5568 12459 30.89 

3 L6 Training 13020 8428 4592 33.35 

4 L7 Training 13440 2532 10908 18.84 

2~3 LA Testing 9900 5370 4530 54.24 

1~2 LB Testing 13900 7698 5833 55.38 

 

 

Fig. 9. Two locations to test. 

groups and machine learning models, as shown in Table IV. For 
example, for feature group 1 (i.e. only SNR) and NN model, the 
maximum accuracy is approximately 90%. Furthermore, it can 
be found that the accuracy for Simple SNR Classifier (SSC) also 
has a very high percentage as 86.47%. Both phenomena indicate 
that  SNR value could be a major factor affecting the machine 
learning result in middle and mild urban environment. When 
more features are used, however, the accuracy decreases greatly 
for most models, especially for KNN, NN and TREE. For SVM, 
the accuracy decreases slightly. Furthermore, the pseudorange 
residual may improve the accuracy, with almost 8% 
improvement for KNN and TREE and 19% improvement for 
NN, respectively. The more intuitive result bar is shown in Fig. 
11.  

2) Positioning results 
After obtaining the LOS/NLOS classification results based 

on machine learning technology, positions are fixed using 
shadow matching method for Locations A and B, with results 
shown in Tables V and VI, respectively. The tables also list the 
classification accuracy results. SVM with feature group 3 and 
SVM with feature group 1 are used for Locations A and B, 
respectively. For comparison, the positioning results of weighted 
least square (WLS) and SM with 100% of classification 
accuracy (True label)  are also shown. 

TABLE II.  FEATURE GROUPS 

Feature 

group 

Features 

SNR NRS EA PR PRP NPR 

1 √           

2 √ √         

3 √ √ √       

4 √ √ √       

5 √ √ √ √ √   

6 √ √ √ √   √ 

7 √ √ √ √ √ √ 

TABLE III.  CLASSIFICATION RESULTS AT LOCATION A 



 

Feature 

group 

Classification accuracy at LA (%) 

KNN NN SVM TREE SSC 

1 57.23 70.43 69.63 68.25 69.50 

2 59.33 49.45 69.48 56.68 69.50 

3 64.24 50.55 78.30 62.68 69.50 

4 57.84 49.45 78.31 61.43 69.50 

5 49.85 50.67 78.28 57.56 69.50 

6 51.71 53.71 78.29 61.19 69.50 

7 58.01 50.55 68.44 61.83 69.50 

TABLE IV.  CLASSIFICATION RESULTS AT LOCATION B 

Feature 

group 

Classification accuracy at LB (%) 

KNN NN SVM TREE SSC 

1 68.55 89.74 89.05 89.52 86.47 

2 70.81 59.01 88.62 62.76 86.47 

3 65.22 40.99 84.52 64.83 86.47 

4 73.36 59.01 84.50 72.57 86.47 

5 70.86 59.24 84.53 60.35 86.47 

6 68.55 89.74 89.05 89.52 86.47 

7 70.81 59.01 88.62 62.76 86.47 

 

 

Fig. 10. Histogram results of classification accuracy for various methods at 
Location A. 

 

Fig. 11. Histogram results of classification accuracy for various methods at 
Location B. 

TABLE V.  POSITIONING RESULTS AT LOCATION A 

Classification approach True label ML SSC 

Classification accuracy (%) 100 79.21 67.25 

WLS 

(m) 

Mean error  17.63  

Standard error 9.59  

Mean error in across-

street direction 
15.72 

Mean error in along-

street direction 
6.91  

SM 

(m) 

Mean error 9.12 10.09 16.71  

Standard error 5.96 4.56 4.43  

Mean error in across-

street direction 
2.16 6.06 7.33 

Mean error in along-

street direction 
8.58 7.19 14.47 

TABLE VI.  POSITIONING RESULTS AT LOCATION B 

Classification approach True label ML SSC 

Classification accuracy (%) 100 85.90 85.18 

WLS 

(m) 

Mean error  19.22  

Standard error 13.76 

Mean error in across-

street direction 
17.92  

Mean error in along-

street direction 
5.43  

SM 

(m) 

Mean error 11.45 11.68 10.85 

Standard error 2.59 4.53 4.75 

Mean error in across-

street direction 
3.67 2.89 3.90 

Mean error in along-

street direction 
10.57 11.09 9.57 

In terms of classification accuracy, two conclusions can be 
drawn. 

First, the classification accuracy of SVM is about 12% 
higher than that of SSC, which is consistent with the machine 
learning results. 

Second, it can be found that the classification accuracy of 
79.21% for SVM with feature group 3 is higher than the 
maximum accuracy (78.31%) in Table III. This is because in the  
model and feature selection process, the pseudorange residual 
cannot be obtained with less than four satellites for one 
constellation according to (1), thus measurements of these 
satellites are ignored for all groups to maintain consistency. 
However, for shadow matching method, the pseudorange 
residual is not used, thus the sample number is bigger than that 
used in the selection process, which results in the different 
classification accuracy. 

In terms of positioning results, due to its high classification 
accuracy, the poisoning results of SVM is very close to that of 
True label and better than that obtained using WLS. It is easy to 
find that a higher poisoning accuracy is obtained at the across-
street direction than that at the along-street direction for shadow 
matching method, which is due to the inherent characteristic of 
shadow matching algorithm. Compared with shadow matching, 
the weighted least square method has a higher accuracy in along-
street direction, but a lower accuracy in across-street. Thus, the 
integration of these two method can be further explored. 

For results at Location B, only SNR is used as the feature for 
SVM because the best classification performance can be 
obtained using only SNR in this scenario according to Table VI. 
It can be found that the classification accuracy for ML and SSC 
is very high. But a slight performance decrease in positioning 
accuracy can be found for ML and True label, compared to SSC. 
A potential explanation to this phenomenon is that at some 
epochs, the classification results for the two methods are 
different, which are not necessarily reflected on classification 
accuracy. The different classification results would cause the 



 

different positioning accuracy. Thus, it can be drawn that the 
classification accuracy is an imperfect metrics for evaluating 
machine learning performance. Another explanation is the effect 
of local Minima, which is shown in Fig. 6.  

V. CONCLUSIONS AND FUTURE WORK 

The machine learning based on SVM has a unique advantage 
over other models according to the experiment results. 
Conclusions can be drawn as follows: 

1) On the whole, machine learning performance is greatly 
affected by signal noise ration and elevation angle. Pseudorange 
residual improves the performance for most models (e.g. KNN, 
NN, TREE) in middle or mild urban environments.  
Pseudorange residual percentage and normalized pseudorange 
residual are two uncertain factors. They can increase or decrease 
the classification accuracy depending on the model and 
scenarios.  

2) Features should be selected depending on the application 
scenarios. Signal noise to ratio can provide an acceptable 
performance in almost all cases. Besides, the accuracy of 
machine learning based on signal to noise ratio is higher than 
SSC. It should be noted that the classification accuracy would 
decrease due to the usage of elevation angle in deep urban areas. 
In middle or mild urban areas, however, it can improve the 
classification accuracy significantly. 

3) Currently, the initial position for ML is provided by WLS, 
which is potentially affected by NLOS signals. The 
performance of ML would be further improved with a more 
accurate initial position, which can be calculated before 
excluding NLOS signals by ML.  

4) The high accuracy of shadow matching method in the 
cross-street direction is further confirmed in this paper.  
Considering that the conventional weighted least square method 
has a better accuracy in along-street direction, a combination of 
the two methods has a potential better accuracy in both 
directions.  

There are various kinds of SVM, which need analysis in 
future work. Besides, As shown in Table VI, the shadow 
matching method is easily affected by local Minima problem, 
which needs further exploration.  
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